

COMPARTO PRODUTTIVO "LA CELLA" PROPOSTA DI INSERIMENTO DI NUOVA AREA Variante al PRG adottata con DCC39 del 26.09.18

PROPONENTE: Sig. Luigi Ferrari

TECNICO: Ing. Geom. Nicola Bernardi

RELAZIONE GEOLOGICA **Integrazioni**

23 GENNAIO 2019

Studio Sargenti – Geologia. Ambiente. Paesaggio. Territorio **Daniele Sargenti – Geologo**

via S. Croce 485 - Fanano tel 3357245004 www.studiosargenti.eu info@studiosargenti.eu

1 PREMESSA

La presente viene redatta per conto del Sig. Luigi Ferrari e ha per oggetto le integrazioni alla Relazione Geologica alla Variante PRG del Comune di Fanano, adottata il 26/09/2018. La stessa riguarda l'inserimento di una nuova area artigianale, in adiacenza al Villaggio "La Cella", già insediato. Il lavoro è stato svolto d'intesa con il Proponente e con il Tecnico di riferimento, Ing. Geom. Nicola Bernardi.

2 OGGETTO DELLE INTEGRAZIONI

Con Atto n.7 del 10/01/2019 la Provincia di Modena ha formalizzato le osservazioni alla Variante. Fra queste, viene riportato il parere tecnico negativo del Servizio Geologico (prot. 40391 del 26 ottobre 2018) in merito allo Relazione Geologica prodotta dallo scrivente. Lo stesso riporta le seguenti osservazioni sostanziali, con prescrizioni:

- Le analisi geognostiche non caratterizzano dal punto di vista geologico-tecnico l'area di studio in quanto nella relazione, il geologo incaricato, fa riferimento ad indagini di repertorio eseguite a monte, esternamente all'ambito, in occasione di altri studi eseguiti a partire dal 1996. Mancando indagini geognostiche specifiche sul sito oggetto della presente variante urbanistica, si prescrive che, già in questa fase, debbano essere realizzate indagini dirette volte a caratterizzare, da punto di vista degli spessori e delle caratteristiche meccaniche, le litologie presenti. Il geologo dovrà ovviamente avere cura di investigare l'intero volume significativo dei terreni, interessati dalle future opere, sia planimetricamente sia in termini di profondità.
- Si prescrive che siano effettuate valutazioni specifiche sulla profondità della falda, direttamente nel lotto in esame, per meglio definire poi le condizioni di stabilità del versante.
- Nella documentazione geologica presentata non sono riportate analisi di stabilità dei versanti interessati dalle future opere. Andranno eseguite opportune analisi di stabilità delle sezioni più significative sia in condizioni statiche che dinamiche, nella configurazione di stato di fatto e di progetto, con la presenza dei sovraccarichi. Si prescrive inoltre, in seguito alle verifiche eseguite dallo scrivente durante un sopralluogo eseguito il 25/10/2018, di indicare, in un apposito elaborato grafico, un'appropriata distanza di sicurezza che le nuove costruzioni dovranno mantenere dai margini più acclivi a valle del lotto.
- Successivamente alla definizione degli spessori delle coperture detritiche gli approfondimenti di II livello andranno condotti in conformità alla DGR 2193/2015 quale aggiornamento dell'atto di coordinamento tecnico denominato "Indirizzi per gli studi di microzonazione sismica in Emilia-Romagna per la pianificazione territoriale e urbanistica" di cui alla DAL n. 112/2007.

Per quanto riguarda il primo punto, si riconosce la carenza di indagini sito specifiche nella Relazione presentata. Al fine di integrare quanto già prodotto, il 18 luglio 2018 sono state eseguite 2 prove penetrometriche DPSH. A partire dal 12 gennaio 2019, ho allestito una nuova campagna geognostica, di cui sarà riferito più avanti.

Per gli aspetti legati alla DGR 2193/2015, mi scuso per il mancato aggiornamento.

3 SVILUPPO DELLE INTEGRAZIONI

Al fine di rispondere compiutamente alle osservazioni e alle prescrizioni, il lavoro sarà così articolato:

- Indagine geognostica integrativa
- Elaborazione e sintesi dei dati
- Aggiornamento Modello Geologico e Geotecnico
- Aggiornamento Modello Sismico
- Microzonazione sismica
- Analisi di stabilità, con simulazione dello stato di progetto
- Aggiornamento Scheda di sintesi

4 RIFERIMENTO NORMATIVO

- DRG 2193/2015
- Circolare Esplicativa con le Istruzioni alle Norme Tecniche per le Costruzioni Assemblea generale del Consiglio Superiore dei LLPP 27 luglio 2018
- DM 17 gennaio 2018 Aggiornamento delle "Norme Tecniche per le costruzioni"
- Consiglio Superiore dei LLPP istruzioni per l'applicazione delle norme Tecniche per le Costruzioni di cui al DM 14.01.2008. Circolare 2 febbraio 2009
- DM MIN 14.01.2008 testo unitario Norme tecniche per le Costruzioni
- Consiglio Superiore dei LLPP pericolosità sismica e criteri generali per la classificazione sismica del territorio nazionale. Allegato al voto n. 36 del 27.07.2007
- Eurocodice 8 (1998) Indicazioni progettuali per la resistenza fisica delle strutture. parte 5: fondazioni, strutture di contenimento ed aspetti geotecnici (stesura finale 2003)
- Eurocodice 7.1 (1997) progettazione geotecnica parte I: Regole Generali
- Eurocodice 7.2 (2002) progettazione geotecnica parte II: Progettazione assistita da prove di laboratorio (2002)
- Eurocodice 7.3 (2002) progettazione geotecnica parte II: Progettazione assistita con prove in sito (2002)
- Circolare RER n.1288 del 11/03/1983

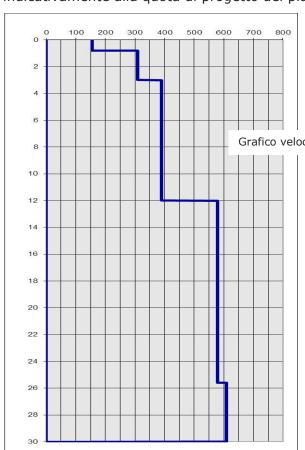
5 INDAGINI GEOGNOSTICHE SITO SPECIFICHE

Al fine di caratterizzare in modo sito specifico, ho predisposto per:

- a. 1 prospezione sismica MASW (2018)
- b. 1 misura HVSR con Tromino (2018)
- c. 4 prove penetrometriche dinamiche pesanti DPSH (2018 e 2019)
- d. 1 prospezione sismica a rifrazione (2019)
- e. 1 sondaggio a carotaggio continuo (2019)

I punti di prova sono identificati alla pagina che segue, nella Carta delle indagini.

La ricerca è stata sviluppata con le seguenti precise finalità:


- Individuazione del bed-rock sismico
- Misurazione dello spessore della coltre detritica
- Caratterizzazione sismica della coltre superficiale per la determinazione dei fattori di amplificazione PGA SI1 SI2
- Individuazione di eventuale falda
- Configurazione delle geometrie e delle caratteristiche stratigrafiche e geotecniche per le verifiche di stabilità

a. PROSPEZIONE SISMICA MASW

Nome	Num Geofoni	Spaziatura geofoni	Lunghezza stesa	Distanza shot	Lunghezza totale	Vs ₃₀ m/sec	Categoria suolo
MASW	24	1,5	34,5	10	44,5	455	В

Essendo indisponibile l'area per attesa taglio orzo, lo stendimento è stato effettuato il 28 giugno 2018 al margine della strada ed il suo centro si pone a -3m circa dalla quota centrale del lotto e dunque indicativamente alla quota di progetto del piazzale dello stabilimento.

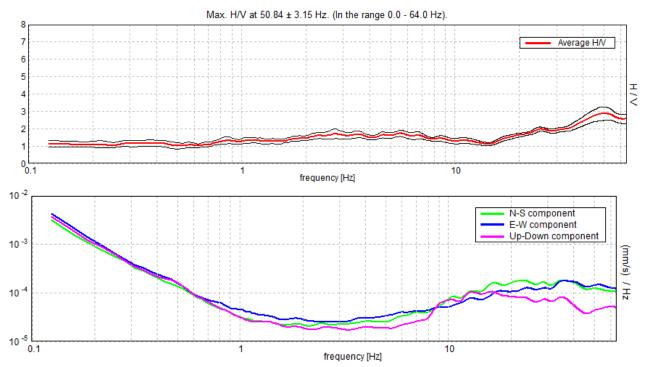
Strato	prof	ondità	Spess.	Vel.
	da	а	m	m/s
Strato1	0.00	0.80	0.80	155
Strato2	0.80	3.00	2.20	310
Strato3	3.00	12.00	9.00	390
Strato4	12.00	<mark>25.60</mark>	13.60	<mark>580</mark>
Strato5	<mark>25.60</mark>	≥30.00	≥4.40	<mark>610</mark>
		•	•	
	Strato1 Strato2 Strato3 Strato4	daStrato10.00Strato20.80Strato33.00Strato412.00	da a Strato1 0.00 0.80 Strato2 0.80 3.00 Strato3 3.00 12.00 Strato4 12.00 25.60 Strato5 25.60 ≥30.00	da a m Strato1 0.00 0.80 0.80 Strato2 0.80 3.00 2.20 Strato3 3.00 12.00 9.00 Strato4 12.00 25.60 13.60 Strato5 25.60 ≥30.00 ≥4.40

 $V_{s_0} = \frac{30}{\sum_{i=1,N} \frac{h}{V_s}}$

Dove:

hi = spessore dello strato i-esimo

 \mathbf{V}_{Si} = velocità onde S nello stato i-esimo


N = numero strati considerati

 Vs_{30} da pc a – 30 m = **455 m/sec**

Le prospezioni e le misurazioni sono state a cura di Tecnogeofisica snc.

Figure 2 – Risultati prospezione MASW

b. MISURA HVSR con Tromino

Picco H/V a 50.84	l ± 3.15 Hz (nell'intervallo 0.0 - 64.0 Hz).							
Criteri per una curva H/V a									
$f_0 > 10 / L_w$	50.84 > 0.50	OK							
$n_c(f_0) > 200$	47793.1 > 200	OK							
$\sigma_A(f) < 2 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 > 0.5Hz$	Superato 0 volte su 1236	OK							
$\sigma_A(f) < 3 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 < 0.5Hz$									
Criteri	i per un picco H/V chiaro [Almeno 5 su	6 dovrebber	essere soddisfatti]						
Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	17.063 Hz	OK							
Esiste f $^+$ in $[f_0, 4f_0] \mid A_{H/V}(f^+) < A_0 / 2$			NO						
$A_0 > 2$	2.87 > 2	OK							
$f_{\text{picco}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$	0.06204 < 0.05		NO						
$\sigma_f < \varepsilon(f_0)$	3.15447 < 2.54219		NO						
$\sigma_{A}(f_0) < \theta(f_0)$	0.3774 < 1.58	OK							

Strumento: TRZ-0099/01-10 Formato dati: 16 byte Fondo scala

[mV]: n.a. Inizio registrazione: 28/06/18 09:51:45 Fine

registrazione: 28/06/18 10:11:45

Nomi canali: NORTH SOUTH; EAST WEST; UP DOWN

Dato GPS non disponibile

Durata registrazione: 0h20'00". Analizzato 78% tracciato (selezione manuale) Freq. campionamento: 128 Hz Lunghezza finestre: 20 s

Tipo di lisciamento: Triangular window Lisciamento: 10%

Figura 3 – Rapporto Spettrale orizzontale su verticale

Figura 4 – Spettri delle singole componenti

c. PROVE PENETROMETRICHE DPSH

I giorni 18 luglio 2018 e il 17 gennaio 2019 il collega Paolo Calicetti ha effettuato per mio conto 4 prove penetrometriche dinamiche pesanti secondo lo standard DPSH, con strumento PAGANI TG-63 100kN

Figure 5 Piazzamento prova P2

Figura 6 – Caratteristiche strumentali

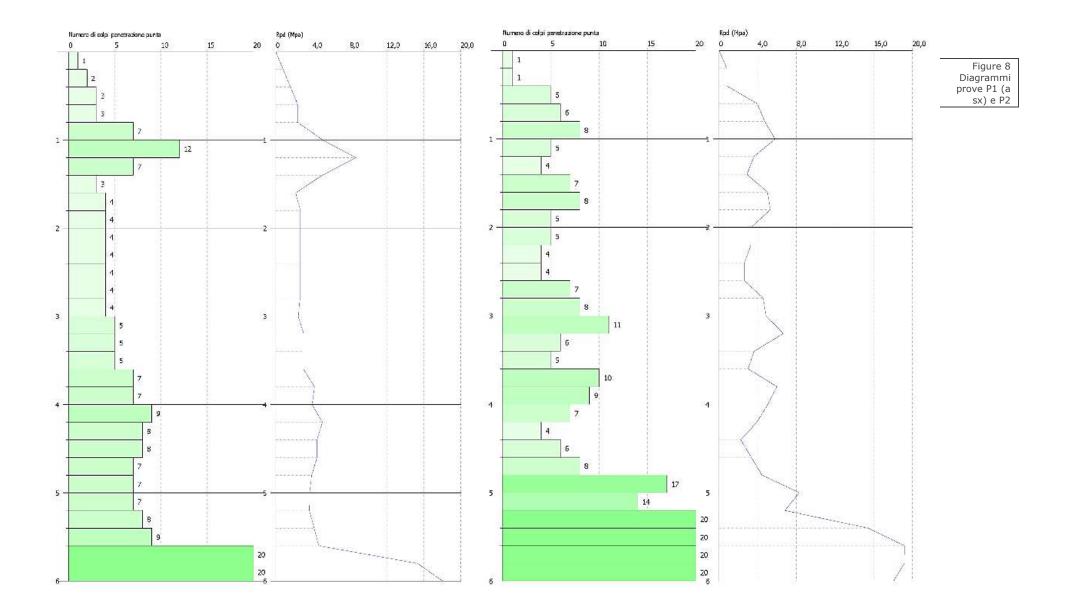


Figure 9 – Tabelle prove DPSH P1 (a sx) e P2

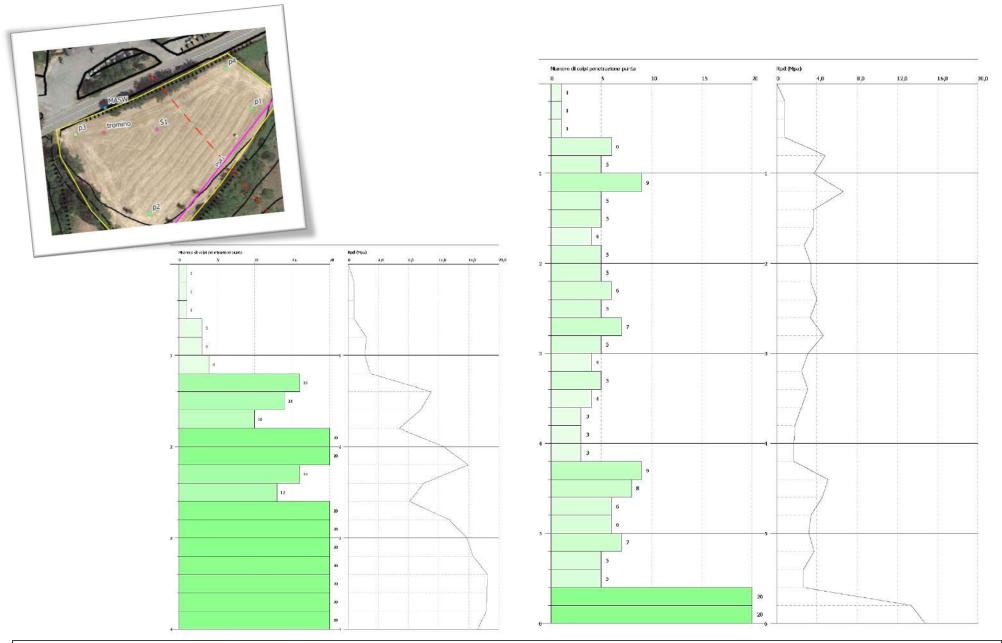


Figure 10 – Diagrammi Prove P3 e P4

Profondità (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Mpa)	Pres. ammissibile con riduzione Herminier Olandesi (KPa)
0,20	1	0,855 0,851 0,847 0,843 0,840 0,836 0,783 0,780 0,826 0,773 0,720 0,767 0,764 0,711 0,709 0,656 0,603 0,601	0,81	40,72
0,40	1		0,81	40,54
0,60	1		0,81	40,36
0,80	3		2,41	120,55
1,00	3		2,22	111,05
1,20	4		2,95	147,45
1,40	16		11,04	552,14
1,60	14		9,62	481,08
1,80	10		7,28	364,25
2,00	20		12,68	634,14
2,20	27		15,95	797,34
2,40	16		10,07	503,35
2,60	13		8,15	407,42
2,80	23		13,42	671,00
3,00	29		15,76	787,88
3,20	33		16,60	829,91
3,40	40		18,51	925,29
3,60	40		18,43	921,42
3,80	40	0,598	18,35	917,64
4,00	40	0,596	17,16	858,07

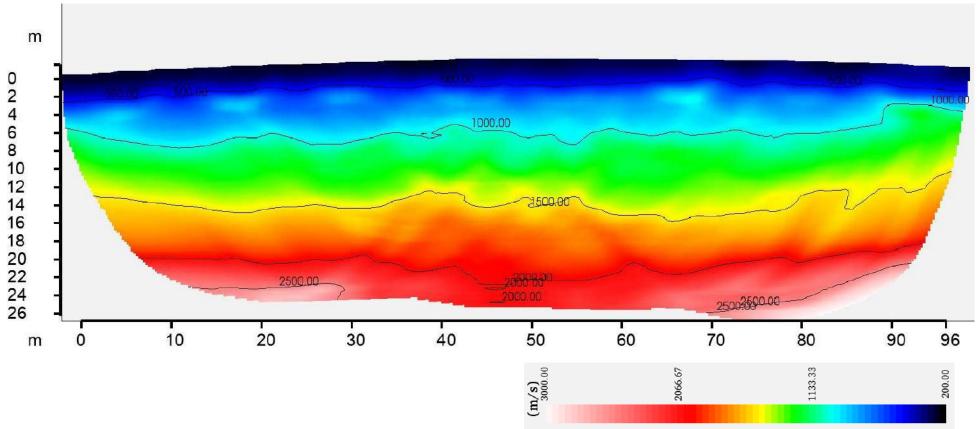
Figure 11 -	Tabelle	prove	DPSH	Р3	(a sx)	e P4
-------------	---------	-------	------	----	--------	------

Profondità (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Mpa)	Pres. ammissibile con riduzione Herminier Olandesi (KPa)
0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00 2,20 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80 4,00 4,20 4,40 4,60 4,80 5,00	1 1 1 1 6 5 9 5 5 4 5 5 6 5 7 5 4 5 4 5 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6	Chi 0,855 0,851 0,847 0,843 0,840 0,836 0,833 0,826 0,823 0,820 0,817 0,814 0,811 0,809 0,806 0,803 0,798 0,796 0,794 0,791 0,785	0,81 0,81 0,81 4,82 3,70 6,64 3,67 3,66 2,91 3,38 3,36 4,02 3,34 4,66 3,10 2,47 3,08 2,47 3,08 2,46 1,84 1,72 1,71 5,13 4,54 3,40 3,20	(KPa) 40,72 40,54 40,36 241,11 185,08 331,76 183,56 182,83 145,70 168,79 168,16 201,06 166,95 232,92 155,01 123,60 154,00 122,81 91,83 85,95 85,70 256,37 227,25 169,97 159,75
5,20 5,40 5,60 5,80	7 5 5 29	0,783 0,781 0,779 0,677	3,72 2,65 2,64 13,32	185,90 132,45 132,13 666,17
6,00	40	0,575	14,76	738,19

d. PROSPEZIONE SISMICA A RIFRAZIONE

linea sismica vista da centro verso ovest

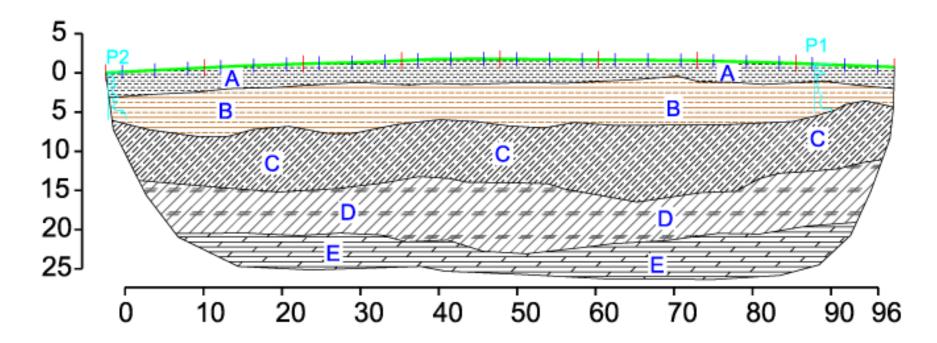
linea sismica vista centro verso est


Il giorno 15 gennaio 2019, Tecnogeofisica snc ha effettuato per mio conto una prospezione sismica a rifrazione lungo il margine di valle del lotto, con uno stendimento di 96m.

L'indagine è stata eseguita utilizzando un sismografo multicanale ad incrementi di segnale, della Abem-Seistronix mod. Ras 24 con 24 canali attivi (sistema ampliabile sino a 240 canali), ed ha sortito segnali chiari ed omogenei.

Dall'analisi della tavola con la tomografia derivata riportata alla pagina che segue, si evidenzia in generale un graduale incremento delle velocità sismiche con la profondità.

È osservabile una variazione verticale nella distribuzione delle isolinee di velocità sismica che si presentano più ravvicinate in prossimità della superficie topografica, mentre evidenziano maggior spaziatura procedendo con la profondità.



Orizzonti sismostratigrafici individuabili

Dalla restituzione/elaborazione "tomografica" della sezione sismica a rifrazione eseguita (onde P) è possibile riconoscere 5 orizzonti sismostratigrafici, con riferimento alla pagina che segue:

- 1) Il primo, definibile come copertura superficiale (areato) cui corrispondono velocità sismiche V_P < 500 m/s. Lo spessore di questo primo orizzonte sismico varia lateralmente tra 2/2,5 m da p.c. con andamento sufficientemente correlabile e continuo lateralmente. [restituzione tomografica con colore blu (orizzonte A)].
- 2) Orizzonte sismico caratterizzato da depositi da mediamente consistenti a consistenti, caratterizzati da velocità sismiche tra V_P =500 e 1000 m/s e profondità del letto variabili fra 5 e 6 m da pc [restituzione tomografica colore da blu a azzurro (orizzonte B)]

- 3) Alla base dei due livelli A e B, più superficiali, si osserva un orizzonte intermedio, con profondità della base tra 14 e 15 m da p.c., ben individuabile e continuo lateralmente, consistente, caratterizzato da velocità sismiche che risultano comprese tra 1000 e 1500 m/sec [restituzione tomografica colore verde (orizzonte C)].
- 4) Successivamente, fino a circa -20 m da p.c., si rileva un orizzonte duro con velocità sismiche che risultano comprese tra 1500 e 2000 m/sec [restituzione tomografica colore da giallo a rosso (orizzonte **D Bed-Rock** alterato)].
- 5) Al di sotto, si individua un livello di base molto duro, caratterizzato da valori di Vp > 2000 m/sec [restituzione tomografica colore rosso intenso (orizzonte **E Bed Rock**)].

e. SONDAGGIO A CAROTAGGIO CONTINUO

La perforazione è stata condotta da Prove Penetrometriche srl nei giorni 16 e 22 gennaio. Il primo foro aveva raggiunto a fatica la profondità di 17m per scarsa potenza della sonda impiegata. Il sondaggio è stato ripreso con mezzo adeguato che ha perforato fino a 22m. Alla presenza di chi scrive, la prima parte è stata condotta dal dott. Vigni e la seconda dal dott. Guerzoni.

Di seguito la stratigrafia e le foto dei campioni.

Lo spessore dei sedimenti si è presentato asciutto e consolidato. Ritengo che già a partire da 11.5m si sia entrati in una facies con presenza di flysch molto alterato con presenza di siltiti durissime, equivalente a quello forato per 16m nel 1996, fino al contatto con APA (-24m)

Sondaggio: 1 Data: 16/01/2019	Ouds		Pagine3/7	Terr RAPPORTO DI PROVA N. R07961 del 23/01/2019 Per Pesenzione del Provento del Pro	June Sorbita Idraulica MRRI M40 affazzara con un carolère semplica IT avente diametro. 101 min e tubi di mestimento di diametro 127 mm per 19 m tatali in seguito alla scarsa stabilità del foro di sondaggio.	II Responsabile di Sito Dott Siefano Vigni Dott Siefano Vigni 294 Aluto Responsabile di Sito 118 Sig. Affredo Tonielli 1198	881 886 886 886 886 886 886 886 886 886	108 (108 (108 (108 (108 (108 (108 (108 (7.8 8				
Committente: Studio Sargenti Riferimento: Fanano (MO), los. La Cella	Coordinate	e: a carolaggio continuo	SCALA 1:76 STRATIGRAFIA - 1 DESCRIZIONE	Datrio ossituito de lima argilloso, nociola chiato, consistente, asciutto, con indusi blocchi calcarentiici grigio chiari. Livelli debolmente eabblosti de atteracione di nocce arentiche.		Detrio costituto de argila imosa, rocciola, de moderalamente consistente a consistente, asciutta, con indusi calcinoli biancasió. Trovante calcarentico alla profondità 3,65 - 4,00 m.	Dabio costulo de limo argilloso, nocciola, da consistente a molto consistente, con inclusi frammenti filcidi etarometrici (>5 cm nel tartio 5,60-8, 65 m) cakarest. Exidenza di vene d'acqua alla profondità 7,70-7,80 m rinvenuta durante fessocizione del candaggio a secco	, alle profoncità:		Argilia, grojala, compatita, con inclusi frammenti liboli etenometrico (1 cm 2 <10 cm) ed etenogenei, localmente atienzi dall'azione dell'acque di pertorazione.	Argilie, grigie scure striate nocciole, motio consistente, con inclusi abbondante frammenti liboti sillitici. Apanire da 13 50 nu difficultà nella perforazione per forte resistenza alla rotazione. Uso di accusa in pressione con scarso recupero di materiale rimaneggiato, prevalentermente ghiadeso. La parti di carola begnate nelle foto rispecchiano l'accusa di carolaggio. Alla profondità 14,60 e 15,50 m l'acqua di perforazione ha diavato la frazione argillosa.	Flysh of Montevenere costituto de alternance di stitti, petiti e arenarie, grigio nocciola.	(M) 22 V Permana 220, 85 Parado di Concassiona Ministan Infrastruttura a Trascopti n. 5,4053 del 19805,7006 - Catina C. Dowie in Sito
AZBIAN CON SISTEMA DI GESTIDIE QUALITY UNE BI SIO SULTATO GESTIFICATO DADVI Certificatione Ufficide - Settine e. A. ». Prove di laboratorio sui terreni ALITOSITZAZIONE HUISTAZIONE PRESENTATI DE ET RESCONTI	oreto 1845/16-02-2012 - Art. 59 DFR 380/2001 - Circolare 7618/5	PEOUE PENETRIN ETRICHE 41961 Caretahanov Rangons (NO) Na par Address, 8 Tal 034-03946 Far 039-039108	9 metri R _{ALTTOLOGIA} pert bees		3	2	9 - 0	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 01	12 Agalla agus compai dell acque di perforazi			M 22 W

AZENDA CON SISTEMA DI GESTIONE QUALITA UNI EN 190 1011 2303 CENTRICATÒ DA DISS Certificazione Ufficiale - Settore « A » - Prove di laboratorio sui terreni AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 1845/16-02-2012 - Art. 59 DPR 380/2001 - Circolare 7618/STC/2 PROVE
PENETRIANETRICHE 41081 Castelnuovo Rangona (800 Via per Bodera, 8 Tal 999-535040 Fee: 699-596166

AZENDA CON SISTEMA DI GESTIONE QUALITA UNE EN ISO STOTIZZIE CERTIFICATO DA DIVIV

Certificatione Ufficiale - Settore « A » - Prove di laboratorio sui terreni AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 1845/15-02-2012 - Art. 59 DPR 380/2001 - Circolare 7618/STC/2010

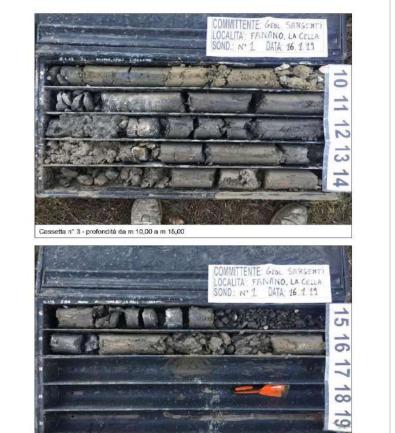
Committente: Studio Sargenti Sondaggio. 1

Riferimento: Fanano (MO), loc. La Cella Data: 16/01/2019

Fotografie - Pagina 1/2 Pagi

Pagina 5/6

 Committente: Studio Sargenti
 Sondaggio: 1


 Riferimento: Fanano (MO), loc. La Cella
 Data: 16/01/2019

 Fotografie - Pagina 2/2
 Pagina 6/6

Cassetta nº 1 - profondità da m 0,00 a m 5,00

Cassetta nº 4 - profondità da m 15,00 a m 17,00

AZENDA CON SISTEMA DI GESTIONE QUALITA UM EN 180 1801 2888 CERTINCATO DA DIV

Certificazione Ufficiale - Settore « A » - Prove di laboratorio sui terreni AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 1845/16-02-2012 - Art. 59 DRR 380/2001 - Circolare 7618/STC/2010

Committente: Studio Sargenti	Sondaggio: 1			
Riferimento: Fanano (MO), loc. La Cella	Data: 16/01/2019			
Fotografie - Pagina 3/3	Pagina 7/7			

6 CARATTERIZZAZIONE GEOLOGICA E GEOMORFOLOGICA LOCALE

6.1 ASPETTI GEOLOGICI E GEOMORFOLOGICI DI DETTAGLIO

L'analisi geomorfologica di dettaglio e le risultanze delle indagini geognostiche di repertorio e di quelle effettuate per la stesura della presente, portano ad una revisione della cartografia regionale che si esprime nell'elaborato cartografico alla pagina che segue.

Il ripiano in oggetto è parte del sistema di evoluzione distensiva del versante che ha interessato il flysch MOV via via sbloccato verso valle sulle Argille APA, in contatto tettonico. La superficie ben si raccorda, in continuità, con quella del Villaggio artigiano insediato e con quelle più ad ovest, segnate da orli strutturali orientati NE-SO.

L'approfondimento del torrente Leo ha segnato l'abbandono di queste quote sulle quali ha esercitato energia, contribuendo alla modellazione e al riempimento con depositi anche a connotazione lacustre intorno a quota 527msm, in corrispondenza della parte centrale del villaggio insediato. La porzione più profonda della struttura di base, costituita dal flysch MOV, evidenzia, sul lotto in esame, un abbassamento di 10m circa rispetto alla quota misurata con il sondaggio a carotaggio S1 del 1996.

Lo spessore dei materiali sedimentari all'interno della vecchia depressione è stato misurato in 9m e aumenta verso sud fino ai 14.5m rinvenuti sull'area in analisi.

Evidente la fagliazione del blocco ad est e ad ovest dell'area, con linee N-S che configurano un prisma allungato nella stessa direzione, e strutturalmente ribassato rispetto a quello del villaggio insediato (vedi sopra) con linee ortogonali E-O. Alla base, si realizza il contatto tettonico MOV/APA. Non attivi i processi erosivi al piede del versante da parte del Torrente Leo. La pendice prospicente il lotto è regolare, vegetata e non evidenzia segni di erosione superficiale.

La natura dei sedimenti fa pensare a un riempimento progressivo in fase sin e post tettonica con alimentazione dal flysch MOV, in sorta di conoide detrititica ben consolidata e stabilizzata.

Le caratteristiche meccaniche della facies detritica evidenziano uno stato da mediamente consistente a molto consistente.

Il sistema non è marcato da falda continua. Rilevato un solo livello permeabile interessato da circolazione idrica fra 7.7 e 7.8m

Confermo pertanto che non esistono presupposti di pericolosità geologica che possano riguardare le fasce di versante a monte e a valle dell'area in esame. L'analisi dell'edificato nell'intorno non ha evidenziato particolari problematiche e non si registrano processi di erosione potenziali o in atto. L'area è pertanto idonea alla trasformazione urbanistica proposta, per quanto di pertinenza e nel rispetto delle indicazioni più avanti espresse.

Il giudizio risulta confermato dall'analisi di stabilità di cui al capitolo 10.

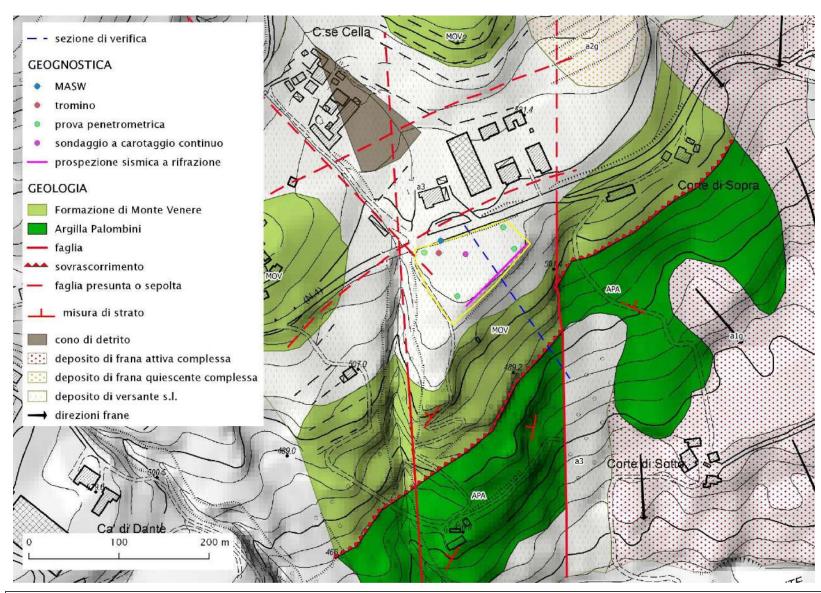


Figura 12 – Carta Geologica, da caratterizzazione locale – Elaborazione Studio Sargenti

7 MODELLO GEOLOGICO E GEOTECNICO

Il modello geologico è costituito da una coltre di sedimenti Limo-argillosi con abbondanti clasti siltitici arenacei e di piccola dimensione, che sormonta per uno spessore di 15m circa una struttura dislocata di flysch, attribuibile alla Formazione MOV. La morfologia del lotto è dolce e restituisce pendenze massime di 8°. Più a valle, la pendenza aumenta e si distende regolare su un angolo medio di 23° I sedimenti sono consolidati e non marcati da falda.

Con riferimento alle prove geognostiche e alla consolidata esperienza in esercizio sul costruito nell'area, si produce di seguito una sintesi dei parametri geotecnici caratteristici del sedimento, fino a 6m di profondità. Le elaborazioni sono state effettuate tramite correlazione Nspt con Geostru Dinamic 2018.

Per quanto riguarda i parametri di resistenza al taglio della coltre coesiva, si fa riferimento ai valori di angolo di attrito restituiti per terreni coesivi dai seguenti autori:

- Peck-Hanson-Thornburn-Meyerhof (1956) Correlazione valida per terreni non molli a prof. < 5 m; Correlazione storica molto usata, valevole per prof. < 5 m per terreni sopra falda e < 8 m per terreni in falda (tensioni < 8-10 t/mg)
- Meyerhof (1956) Correlazioni valide per terreni argillosi ed argillosi-marnosi fessurati, terreni di riporto sciolti e coltri detritiche (da modifica sperimentale di dati).
- Shioi-Fukuni (1982) ROAD BRIDGE SPECIFICATION, Angolo di attrito in gradi valido per sabbie sabbie fini o limose e limi siltosi

Gli stessi sono stati mediati per ogni strato. Anche i parametri di deformazione sono stati ricavati dai vari autori e mediati, avendo cura di scartare i valori più alti e più bassi.

Per quanto riguarda la coesione efficace, viene attribuita una quota dallo scrivente sulla base dell'esperienza.

Parametri geotecnici caratteristici

PROF.	Nspt	LITO	AGI	Coesione efficace c'k	Angolo attrito efficace Φ'k	Coesione non drenata Cuk	Peso volume γk	Modulo elastico Ek	Modulo Edometrico Mok
				kN/mq	o	kN/mq	kN/mc	kN/mq	kN/mq
da 0 a 0.8m	3.35	Α	poco consistente	2	24	35	20	2470	3450
da 0.8 a 1.4m	12.93	LA	consistente	20	28	125	21	12450	10400
da 1.4 a 3.6m	6.23	AL	moderatamente consistente	10	25	58	20	5520	5600
da 3.6 a 5.6m	11.48	AL	consistente	20	27	103	21	11150	14380

Tabella 1 – Modello geotecnico Prova1

PROF.	Nspt	LITO	AGI		Coesione efficace c'k	Angolo attrito efficace Φ'k	Coesione non drenata Cuk	Peso volume γk	Modulo elastico Ek	Modulo Edometrico Mok	
					kN/mq	0	kN/mq	kN/mc	kN/mq	kN/mq	-
da 0 a 2.6m	8.28	Α	poco consiste	ente	10	26	79	20	7610	7350	Tabella 2 – Modello geotecnico Prova2
da 2.6 a 4.8m	9.94	LA	consistent	е	20	27	90	21	9350	8820	Tabella 2 - Modello geotechico Provaz
da 4.8 a 5.6m		LSA	moderatamente a	ddensato	2	33	0	20	13000	13700	
PROF.	Nspt	LITO	AGI		Coesione efficace c'k		Coesion non dren Cuk	- .	ne elastic	-	
					kN/mq	0	kN/mq	kN/r	nc kN/m	kN/mq	
da 0 a 1.2m	4.1	Α	moderatamente	consistente	10	24	42	20	3320	4295	Tabella 3 – Modello geotecnico Prova3
da 1.2 a 3.2m	29.97	' LA	molto consi	stente	20	33	240	21	30595	24340	Tubella 3 Modello geotecineo Movas
PROF.	Nspt	LITO	AGI	Coesione efficace c'k	Angolo att efficace Φ'k		ata volume γk	Modulo elastico Ek		со	
da 0 a 0.6m	1.49	suolo	poco consistente	0	22	19	18	807	1252		Tabella 4 – Modello geotecnico Prova4

20

7155

7074

Alle profondità indagate non è stata registrata la presenza di falda libera. Presente un orizzonte fra 7.7 e 7.8m

26

Modello geomeccanico da assumere per le verifiche di stabilità di cui al Capitolo 10.

20

consistente

da 0.6 a 5.6m 8.05 LA

Da 1 a 6m depositi da mediamente consistenti a consistenti $Vp=500\div1000$ m/s Vs=310m/sec Cu=100kN/mq $F'=27^{\circ}$ G=1900kN/mq Da 6 a 14m Orizzonte consistente, $Vp=1000\div1500$ m/sec Vs=390m/sec Cu=120kN/mq $F'=29^{\circ}$ G=2000kN/mq Da 15 a 26m Bed Rock $Vp=1500\div2500$ m/sec $Vs=580\div610$ m/sec $F'=33^{\circ}$ G=2400kN/mq

77

Il deposito risulta ben consolidato, anche perché drenato alla base e sui fianchi sud ed ovest.

8 MICROZONAZIONE SISMICA

8.1 ANALISI DI II LIVELLO (DGR 2193/2015 RER): FATTORI DI AMPLIFICAZIONE F.A.

L'area in studio rientra nella zona "Appennino (zone collinari e montane) con substrato non rigido caratterizzato da Vs<<800m/s"

Con riferimento alla prova MASW (quota 522.5msm) e considerate le risultanze del sondaggio con perforatrice (quota 525.6msm +3.1m) e della prospezione a rifrazione, è possibile identificare il BR sismico alla profondità massima di 15m.

Per il calcolo dei fattori F.A. sono da valutare due dati :

- lo spessore dei terreni di copertura fino al bed-rock → H = 15m
- la velocità delle onde S nei terreni di copertura → **Vs**H

$$Vs_{H} = \frac{H}{\Sigma \frac{h_{i}}{Vs_{i}}} \quad \text{Vs}_{i} = \text{velocit\`a in m/s dello strato i-esimo} \quad h_{i} = \text{spessore in metri dello strato i-esimo}$$

Nel nostro caso $Vs_H = 15/[(2.2/310)+(9/390)+(3.8/390)] = 376m/s$

Di conseguenza:

	150	200	250	300	350	400	450	500	600	700
5	2.3	2.0	1.6	1.5	1.4	1.3	1.3	1.2	1.2	
10	2.3	2.2	2.0	1.8	1.6	1.4	1.3	1.3	1.2	
15	2.2	2.2	2.1	2.0	1.8	1.6	1.4	1.3	1.2	
20	2.1	2.1	2.1	2.0	1.9	1.7	1.5	1.4	1.2	
25	2.1	2.1	2.1	2.0	1.9	1.8	1.6	1.4	1.3	
30		2.1	2.1	2.0	1.9	1.8	1.6	1.4	1.3	
35		2.1	2.1	2.0	1.9	1.8	1.6	1.5	1.4	1.2
40		2.0	2.0	2.0	1.9	1.8	1.6	1.5	1.4	1.2
50		1.9	1.9	1.9	1.9	1.8	1.6	1.5	1.4	1.2

Fattori di Amplificazione **PGA**. Colonna 1 H (m), riga 1 VsH (m/s)

	150	200	250	300	350	400	450	500	600	700
5	2.1	1.7	1.5	1.4	1.4	1.3	1.3	1.3	1.3	
10	2.6	2.3	1.9	1.6	1.5	1.4	1.3	1.3	1.3	
15	2.7	2.6	2.3	1.9	1.6	1.5	1.4	1.3	1.3	
20	2.6	2.6	2.4	2.1	1.8	1.6	1.5	1.4	1.3	
25	2.6	2.6	2.5	2.3	2.0	1.7	1.6	1.4	1.3	
30		2.4	2.4	2.3	2.1	1.8	1.6	1.5	1.3	
35		2.4	2.4	2.3	2.2	1.9	1.7	1.5	1.4	1.2
40		2.2	2.2	2.2	2.2	2.0	1.8	1.6	1.4	1.2
50		2.1	2.1	2.1	2.1	2.0	1.8	1.6	1.5	1.3

Fattori di Amplificazione **SI1** (0.1s =T0=0.5s). Colonna 1 H (m), riga 1 VsH (m/s)

	150	200	250	300	350	400	450	500	600	700
5	1.4	1.4	1.4	1.3	1.3	1.3	1.3	1.3	1.3	
10	1.8	1.6	1.4	1.4	1.3	1.4	1.3	1.3	1.3	
15	2.3	1.9	1.6	1.4	1.4	1.4	1.3	1.3	1.3	
20	2.9	2.6	1.9	1.6	1.4	1.4	1.4	1.3	1.3	
25	3.6	3.0	2.3	1.7	1.5	1.4	1.4	1.4	1.3	
30		3.3	2.7	1.9	1.7	1.5	1.4	1.4	1.3	
35		3.5	3.0	2.2	1.8	1.6	1.5	1.4	1.3	1.1
40		3.5	3.2	2.6	2.0	1.8	1.6	1.5	1.4	1.2
50	3	3.3	3.3	3.0	2.4	2.0	1.8	1.6	1.5	1.3

Fattori di Amplificazione **SI2** (0.5s ≤T0≤1.0s). Colonna 1 H (m), riga 1 VsH (m/s)

8.2 MICROZONAZIONE SISMICA

Riferimento territoriale per le tabelle di cui alla DGR. 2193/2015	Appennino e margine appenninico-padano
Accelerazione massima orizzontale di picco al suolo per To (a _{refg})	0.179
Velocità di riferimento di taglio del substrato marino (>Vs>)	<800 m/s
Spessore del deposito di copertura considerato (H)	15 m
Velocità equivalente delle onde di taglio del deposito di copertura considerato (Vs _H)	377 m/s
Profondità Bedrock sismico	12 m
Velocità onde di taglio Bedrock (Vs)	580 m/s
Velocità equivalente delle onde di taglio nei primi 30 m (Vs ₃₀)	455 m/s
Coefficiente di amplificazione per categoria topografica (S_T)	1.2
Fattore di Amplificazione del P.G.A. (F.A. P.G.A.)	1.7
Fattore di Amplificazione Intensità Spettrale (SI1 0.1s <to<0.5s.)< td=""><td>1.55</td></to<0.5s.)<>	1.55
Fattore di Amplificazione Intensità Spettrale (SI2 0.5s <to<1.0s.)< td=""><td>1.4</td></to<1.0s.)<>	1.4
Accelerazione massima orizzontale di picco alla superficie (ag/g = a_{ref} * F.A. P.G.A. *S _T)	0.365
Frequenze di risonanza del terreno	Picco H/V a 50.84 ± 3.15 Hz (nell'intervallo $0.0 - 64.0$ Hz)

Tabella 5 - VALUTAZIONE PARAMETRI SISMICI DEL SITO CON RIFERIMENTO ALLA DGR N. 2193/2015

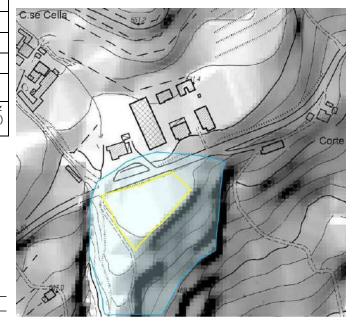


Figura 13 - Carta microzonazione sismica – base topografica estratto CTR 2013 CON DTM

9 ELEMENTI DI PROGETTO

Lo Studio di progettazione ha fornito una prima quota di imposta del nuovo stabilimento, in modo da consentire l'accesso funzionale dalla strada SP4. Sarà necessario sbancare spessori massimi di 3m e riportare a valle per altezze massime di 4m, solo localmente, a SE con controllo attraverso muro di sostegno. L'esubero dei materiali scavati viene stimato in 2500mc, pari a 4750t di decremento tensionale sul lotto.

I carichi complessivi previsti con l'insediamento dello stabilimento saranno dell'ordine di 2.5t/mq che nell'ipotesi di 1800mq di superficie coperta, fornisce 4500t di incremento di carico.

Si realizza pertanto un sostanziale equilibrio generale, con impatto da considerarsi nullo da questo punto di vista.

Entrambe le indicazioni di cui sopra concorrono a simulare lo stato di progetto nelle verifiche di stabilità, di cui al Capitolo 10.

10 ANALISI DI STABILITA' CON SIMULAZIONE DELLO STATO DI PROGETTO

Viene utilizzata la sezione più sfavorevole per lo stabilimento, prossima all'ingombro presunto dello stabilimento verso est. Le reiterate analisi sono state condotte con Geostru Slope 2018

E' stata utilizzata l'opzione di introdurre i cefficienti parziali per i parametri geotecnici, in tutte le verifiche effettuate Azione sismica con metodo pseudostatico globale, introdotta direttamente sui conci (NNTC2018), in tutte le fasi di verifica. Le risultanze delle indagini, l'impermeabilità dei depositi ed il drenaggio alla base e sui fianchi fa escudere la possibilità di falda.

STATO DI FATTO Analisi di stabilità dei pendii con: BISHOP (1955)

=======================================	
Lat./Long.	44,233715057373/10,8310985565186
Calcolo eseguito secondo	NTC 2018
Numero di strati	3,0
Numero dei conci	20,0
Grado di sicurezza ritenuto accettabile	1,3
Coefficiente parziale resistenza	1,0
Parametri geotecnici da usare. Angolo di attrito:	Picco
Analisi	Condizione drenata
Superficie di forma circolare	
=======================================	=======================================
Maglia dei Centri	
	=======================================
Ascissa vertice sinistro inferiore xi	60,0 m
Ordinata vertice sinistro inferiore yi	70,0 m
Ascissa vertice destro superiore xs	130,0 m
Ordinata vertice destro superiore ys	110,0 m

Passo di ricerca 10,0
Numero di celle lungo x 10,0
Numero di celle lungo y 10,0

Coefficienti sismici [N.T.C.]

Dati generali

Tipo opera: 2 - Opere ordinarie
Classe d'uso: Classe II
Vita nominale: 50,0 [anni]
Vita di riferimento: 50,0 [anni]

Parametri sismici su sito di riferimento

Categoria sottosuolo: B Categoria topografica: T2

S.L. Stato limite	TR Tempo ritorno [anni]	ag [m/s²]	F0 [-]	TC* [sec]
S.L.O.	30,0	0,58	2,48	0,25
S.L.D.	50,0	0,73	2,46	0,26
S.L.V.	475,0	1,7	2,49	0,29
S.L.C.	975,0	2,13	2,5	0,3

Coefficienti sismici orizzontali e verticali

Opera: Stabilità dei pendii e Fondazioni

S.L. Stato limite	amax [m/s²]	beta [-]	kh [-]	kv [sec]
S.L.O.	0,8352	0,2	0,017	0,0085
S.L.D.	1,0512	0,2	0,0214	0,0107
S.L.V.	2,448	0,24	0,0599	0,03
S.L.C.	3,0232	0,28	0,0863	0,0432

Coefficiente azione sismica orizzontale 0,06
Coefficiente azione sismica verticale 0,03

Vertici profilo

Nr	Χ	У
	(m)	(m)
1	0,0	0,0
2	12,22	5,93
3	30,55	13,06
4	48,88	20,58
5	54,99	21,34

6	73,32	29,98
7	79,43	31,17 36,49 37,68
8	91,65	36,49
9	97,76	37,68
10	122,2	49,16
11	128,31	53,15
12	135,5	54,62
13	143,6	55,48
14	148,74	56,23
15	154,41	57,09
16	160,15	57,92
17	166,13	58,62
18	172,0	59,28
19	177,81	59,64
20	188,82	53,15 54,62 55,48 56,23 57,09 57,92 58,62 59,28 59,64 59,72
21	195.16	56,73
22	202,76 205,16	56,31 57,42
23	205,16	57,42

Vertici strato1

	TOTAL OLI GLO TITLE						
N	X	У					
	(m)	(m)					
1	0,0	0,0					
2	12,22	5,93					
3	30,55	13,06					
4	48,88	20,58					
5	54,99	21,34					
6	73,32	29,98					
7	79,43	31,17					
8	91,65	36,49					
9	97,76	37,64					
10	122,2	49,16					
11	205,16	51,52					

Vertici strato2

N	X	У
	(m)	(m)
1	0,0	0,0
2	12,22	5,93
3	30,55	13,06
4	48,88	20,58
5	54,99	21,34
6	73,32	29,98
7	79,43	31,17
8	91,65	36,49

9	97,76	37,64
10	205,16	44,22

Coefficienti parziali azioni

Sfavorevoli: Permanenti, variabili
Favorevoli: Permanenti, variabili
1,0 1,0
1,0
1,0

Coefficienti parziali per i parametri geotecnici del terreno

Tangente angolo di resistenza al taglio 1,25
Coesione efficace 1,25
Coesione non drenata 1,4
Riduzione parametri geotecnici terreno Si

Stratigrafia

Strato	Coesione (kg/cm²)	Coesione non drenata (kg/cm²)	resistenza al taglio	Peso unità di volume (Kg/m³)	Peso saturo (Kg/m³)	Litologia	
			(°)				
1	0,1	1	27	1900	2000		
2	0,2	1,2	29	2000	2100		
3	2	0	33	2400	2400		

Risultati analisi pendio [A2+M2+R2]

Fs minimo individuato 1,35
Ascissa centro superficie 105,5 m
Ordinata centro superficie 88,0 m
Raggio superficie 48,98 m

B: Larghezza del concio; Alfa: Angolo di inclinazione della base del concio; Li: Lunghezza della base del concio; Wi: Peso del concio; Ui: Forze derivanti dalle pressioni neutre; Ni: forze agenti normalmente alla direzione di scivolamento; Ti: forze agenti parallelamente alla superficie di scivolamento; Fi: Angolo di attrito; c: coesione.

xc = 105,50 yc = 88,00 Rc = 48,981 Fs=1,348

Nr.	B m	Alfa (°)	Li Wi m (Kg)	Kh•Wi (Kg)	Kv∙Wi (Kg)	c (kg/cm²)	Fi (°)	Ui N'i (Kg) (Kg)	Ti (Kg)	
1	2,05	-4,0	2,05 2298,46	137,91	68,95	0,16	23,9	0,0 2533,8	3267,7	
2	2,05	-1,6	2,05 6646,72	398,8	199,4	0,16	23,9	0,0 6781,4	4659,5	
3	2,05	0,8	2,0510644,41	638,66	319,33	0,16	23,9	0,010565,9	5903,4	
4	2,05	3,2	2,0514291,88	857,51	428,76	0,16	23,9	0,013925,8	7011,8	
5	2,05	5,6	2,06 17587,6	1055,26	527,63	0,16	23,9	0,016891,4	7994,9	
6	2,05	8,0	2,07 20528,1	1231,69	615,84	0,16	23,9	0,019486,6	8860,6	
7	2,05	10,4	2,0823108,11	1386,49	693,24	0,16	23,9	0,021728,8	9614,8	
8	2,05	12,9	2,125320,09	1519,21	759,6	0,16	23,9	0,023629,5	10261,7	
9	2,05	15,3	2,12 27154,1	1629,25	814,62	0,16	23,9	0,025194,9	10803,6	
10	2,74	18,2	2,8838535,48	2312,13	1156,06	0,16	23,9	0,035589,1	15125,1	
11	1,35	20,8	1,4519988,48	1199,31	599,65	0,16	23,9	0,018427,1	7779,7	
12	2,05	22,9	2,2231728,01	1903,68	951,84	0,16	23,9	0,029263,6	12260,5	
13	2,71	26,0	3,0144142,96	2648,58	1324,29	0,16	23,9	0,040821,5	17000,3	
14	1,38	28,7	1,5822343,98	1340,64	670,32	0,16	23,9	0,020717,2	8685,8	
15	2,05	31,0	2,3930374,18	1822,45	911,23	0,16	23,9	0,028167,2	12096,2	
16	2,05	33,8	2,4626696,05	1601,76	800,88	0,16	23,9	0,024728,0	11055,7	
17	1,71	36,5	2,1319060,96	1143,66	571,83	0,16	23,9	0,017567,8	8305,8	
18	2,38	39,6	3,0920413,56	1224,81	612,41	0,08	22,2	0,019977,8	7871,7	
19	2,05	43,0	2,810906,62	654,4	327,2	0,08	22,2	0,010426,7	4812,7	
20	2,05	46,4	2,97 3881,38	232,88	116,44	0,08	22,2	0,0 2868,9	2627,7	

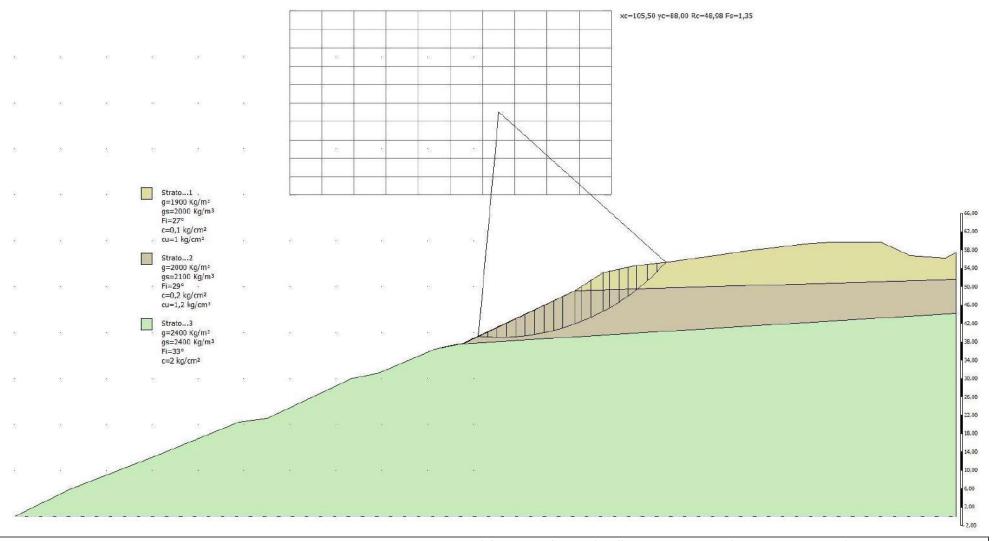


Figura 14 – Stato di fatto – superficie con il coefficiente minimo – Introdotta azione sismica e riduzione parametri NNTC2018

STATO DI PROGETTO Analisi di stabilità dei pendii con: BISHOP (1955)

Lat./Long.	44,233715057373/10,8310985565186
Calcolo eseguito secondo	NTC 2018
Numero di strati	3,0
Numero dei conci	20,0
Grado di sicurezza ritenuto accettabile	1,21
Coefficiente parziale resistenza	1,0
Parametri geotecnici da usare. Angolo di attrito:	Picco
Analisi	Condizione drenata

Superficie di forma circolare

Maglia dei Centri

Ascissa vertice sinistro inferiore xi	60,0 m
Ordinata vertice sinistro inferiore yi	70,0 m
Ascissa vertice destro superiore xs	130,0 m
Ordinata vertice destro superiore ys	110,0 m
Passo di ricerca	10,0
Numero di celle lungo x	10,0
Numero di celle lungo y	10,0

Coefficienti sismici [N.T.C.]

Dati generali

Tipo opera: 2 - Opere ordinarie
Classe d'uso: Classe II
Vita nominale: 50,0 [anni]
Vita di riferimento: 50,0 [anni]

Parametri sismici su sito di riferimento

Categoria sottosuolo: B Categoria topografica: T2

	S.L.	TR	ag	F0	TC*
	Stato limite	Tempo ritorno [anni]	[m/s ²]	[-]	[sec]
ŀ	S.L.O.	30,0	0,58	2,48	0,25
	S.L.D.	50,0	0,73	2,46	0,26
	S.L.V.	475,0	1,7	2,49	0,29
	S.L.C.	975,0	2,13	2,5	0,3

Coefficienti sismici orizzontali e verticali

Opera: Stabilità dei pendii e Fondazioni

	S.L.	amax	beta	kh	kv
	Stato limite	[m/s²]	[-]	[-]	[sec]
	S.L.O.	0,8352	0,2	0,017	0,0085
	S.L.D.	1,0512	0,2	0,0214	0,0107
	S.L.V.	2,448	0,24	0,0599	0,03
Ī	S.L.C.	3,0232	0,28	0,0863	0,0432

Coefficiente azione sismica orizzontale0,06Coefficiente azione sismica verticale0,03

Vertici profilo

vertici profilo		
Nr	X	У
	(m)	(m)
1	0,0	0,0
2	12,22	5,93
3	30,55	13,06
4	48,88	20,58
5	54,99	21,34
6	73,32	29,98
7	79,43	31,17
8	91,65	36,49
9	0,0 12,22 30,55 48,88 54,99 73,32 79,43 91,65 97,76 122,2 128,31 129,8	37,68
10	122,2	49,16
11	128,31	53,15
12	129,8	53,97
13	135,47	53,97
14	135,47	56,97
15	137,8	57,42
16	149,09	57,42
17	170,5	57,42
18	195,16	56,31
19	202,76	56,31
20	205,16	0,0 5,93 13,06 20,58 21,34 29,98 31,17 36,49 37,68 49,16 53,15 53,97 53,97 56,97 57,42 57,42 57,42 56,31 56,31

Vertici strato1

N	X (m)	y (m)
1	0,0	0,0
2	12,22	5,93
3	30,55	13,06
4	48,88	20,58
5	54,99	21,34
6	73,32	29,98

7	79,43	31,17
8	91,65	36,49
9	97,76	37,64
10	122,2	49,16
11	205,16	51.52

Vertici strato2

N	X	У
	(m)	(m)
1	0,0	0,0
2	12,22	5,93
3	30,55	13,06
4	48,88	20,58
5	54,99	21,34
6	73,32	29,98
7	79,43	31,17
8	91,65	36,49 37,64
9	97,76	37,64
10	205,16	44,22

Coefficienti parziali azioni

Sfavorevoli: Permanenti, variabili 1,0 1,0 Favorevoli: Permanenti, variabili 1,0 1,0 1,0

Coefficienti parziali per i parametri geotecnici del terreno

Tangente angolo di resistenza al taglio 1,25
Coesione efficace 1,25
Coesione non drenata 1,4
Riduzione parametri geotecnici terreno Si

Stratigrafia

	(kg/cm²)	Coesione non drenata (kg/cm²)		Peso unità di volume (Kg/m³)	Peso saturo (Kg/m³)	Litologia	
1	0,1	1	27	1900	2000		
2	0,2	1,2	29	2000	2100		
3	1		33	2400	2150		

Muri di sostegno - Caratteristiche geometriche

N°	X	У	Base	Base	Altezza	Spessore	Spessore	Peso
	(m)	(m)	mensola a	mensola a	muro	testa	base	specifico
			valle	monte	(m)	(m)	(m)	(Kg/m ³)
			(m)	(m)				
1	135,47	53,97	0,5	1	3	0,2	0,3	2500

Carichi distribuiti

N°	xi	yi	xf	yf	Carico esterno
	(m)	(m)	(m)	(m)	(kg/cm ²)
1	149,09	57.13	171,09	57.13	0.25

Risultati analisi pendio [A2+M2+R2]

Fs minimo individuato 1,26
Ascissa centro superficie 102,0 m
Ordinata centro superficie 98,0 m
Raggio superficie 59,72 m

xc = 102,00 yc = 98,00 Rc = 59,72 Fs=1,262

Nr.	B m	Alfa (°)	Li m	Wi (Kg)	Kh•Wi (Kg)	Kv•Wi (Kg)	c (kg/cm	Fi ²) (°)	Ui (Kg)	N'i Ti (Kg) (Kg)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	2,33 2,33 2,33 2,33 2,33 2,33 2,33 2,33	-1,6 0,6 2,9 5,1 7,4 9,6 11,9 14,2 16,5 18,7 21,1 24,3 26,9 28,8 31,3 33,4 35,5	2,33 2,33 2,33 2,34 2,35 2,37 2,38 2,41 2,43 2,15 2,82 3,82 1,67 2,31 2,73 1,63 2,8	2749,02 7947,56 12721,1 17068,27 20985,42 24467,09 27505,47 30090,26 32208,54 29457,02 40419,18 57852,5 25562,19 32648,44 31697,89 18600,68 33935,73	164,94 476,85 763,27 1024,1 1259,1. 1468,0. 1650,3. 1805,4. 1932,5. 1767,4. 2425,1! 1533,7. 1958,9 1901,8 1116,0- 2036,1-	82,47 238,43 381,63 512,05 3 629,56 3 734,01 3 825,16 2 902,71 1 966,26 2 883,71 5 1212,58 5 1735,58 3 766,87 1 979,45 7 950,94 4 558,02 4 1018,07	0,16 0,16 0,16 0,16 0,16 0,16 0,16 0,16	23,9 23,9 23,9 23,9 23,9 23,9 23,9 23,9	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	2860,0 3963,1 7883,2 5727,5 12368,7 7307,4 16354,3 8716,3 19869,8 9964,6 22938,2 11060,6 25575,9 12010,4 27793,2 12817,9 29594,0 13485,0 26966,6 12201,8 36935,4 16553,9 52895,9 23433,2 23416,3 10345,3 29874,6 13433,2 28831,1 13591,7 16977,2 8039,5 31304,5 14549,7
18 19 20	3,35 2,33 2,33	38,9 42,5 45,6	4,31 3,16 3,33	37689,95 15404,72 5421,5 4	,	1130,7 462,14 162,65	0,08	22,2 22,2 22,2	0,0 0,0 0,0	36667,7 14575,8 14702,7 6754,2 4204,2 3471,1

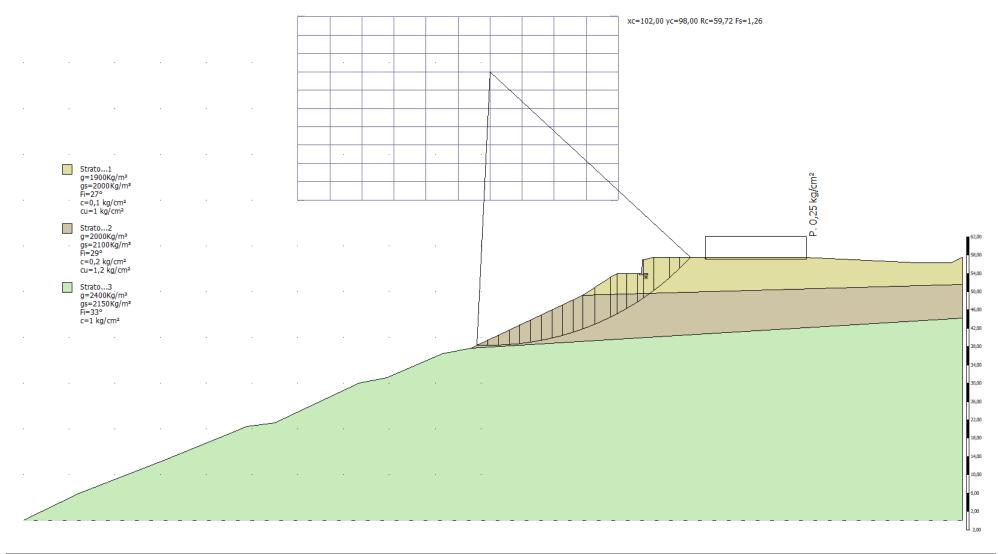


Figura 15 – Verifica dello stato di progetto – Superficie con il coefficiente minimo

Il risultato viene considerato accettabile, viste le condizioni generali di compensazione tensionale e le riduzioni effettuate sui parametri

11 SCHEDA DI SINTESI

Come conclusione dello studio, viene ora restituita una scheda di sintesi

Fanano Trentino, Località Ca' Cella QUOTA 526 msm

Latitudine (WGS84): 44,2337151 [°]

Longitudine (WGS84): 10,8310986 [°]

Latitudine (ED50): 44,2346649 [°]

Longitudine (ED50): 10,8320990 [°]

DESTINAZIONE URBANISTICA: Attività produttive

RISCHIO SISMICO da PTCP: Area potenzialmente soggetta ad effetti locali

INSTABILITÀ da PTCP : Non segnalata

FORMAZIONE : MOV Formazione di Monte Venere

LITOLOGIA superficiale: manto detritico di disfacimento flysch - spessore 15m

FALDA: assente

MORFOLOGIA: Ripiano su massa dislocata Pendio prospicente di 23° CATEGORIA TOPOGRAFICA: T2

Vs₃₀ MISURATA = **455 m/s** CATEGORIA SUOLO = **B**

PERICOLOSITÀ SISMICA: (periodo di ritorno di 475 anni) Magnitudo: DL 112 R.E.R. = 5,439

Accelerazione orizzontale massima al suolo: ag/g: DM 17.01.2018 = 0.291 - DGR 2193/2015 R.E.R.= 0.365

MICROZONAZIONE SISMICA – LIVELLO DI APPROFONDIMENTO : II HVRS Picco H/V a 50.84 ± 3.15 Hz (nell'intervallo 0.0 - 64.0 Hz)

STABILITÀ : Buona

RISCHIO LIQUEFAZIONE IN CONDIZIONI SISMICHE : **Assente**RISCHIO STABILITÀ PENDIO IN CONDIZIONI SISMICHE : **Assente**

PARERE EDIFICABILITÀ : Edificabile

TIPOLOGIA FONDAZIONE CONSIGLIATA: Superficiale continua

APPROFONDIMENTI CONSIGLIATI: Studio dell'imposta e della tipologia del muro di contenimento del piazzale a SE

PRESCRIZIONI : Manutenzione periodica alveo Fosso del Castagnatello, in adiacenza al margine ovest.

Garantire l'equilibrio tensionale come da analisi al capitolo 9.

Fanano, 23 gennaio 2019

Daniele Sargenti - Geologo